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Background—Prediction of prognosis remains a major unmet need in new-onset heart failure (HF). Although several
clinical tests are in use, none accurately distinguish between patients with poor versus excellent survival. We
hypothesized that a transcriptomic signature, generated from a single endomyocardial biopsy, could serve as a novel
prognostic biomarker in HF.

Methods and Results—Endomyocardial biopsy samples and clinical data were collected from all patients presenting with
new-onset HF from 1997 to 2006. Among a total of 350 endomyocardial biopsy samples, 180 were identified as
idiopathic dilated cardiomyopathy. Patients with phenotypic extremes in survival were selected: good prognosis
(event-free survival for at least 5 years; n�25) and poor prognosis (events [death, requirement for left ventricular assist
device, or cardiac transplant] within the first 2 years of presentation with HF symptoms; n�18). We used human U133
Plus 2.0 microarrays (Affymetrix) and analyzed the data with significance analysis of microarrays and prediction
analysis of microarrays. We identified 46 overexpressed genes in patients with good versus poor prognosis, of which
45 genes were selected by prediction analysis of microarrays for prediction of prognosis in a train set (n�29) with
subsequent validation in test sets (n�14 each). The biomarker performed with 74% sensitivity (95% CI 69% to 79%)
and 90% specificity (95% CI 87% to 93%) after 50 random partitions.

Conclusions—These findings suggest the potential of transcriptomic biomarkers to predict prognosis in patients with
new-onset HF from a single endomyocardial biopsy sample. In addition, our findings offer potential novel therapeutic
targets for HF and cardiomyopathy. (Circulation. 2008;118:238-246.)
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The clinical course of patients with newly diagnosed heart
failure varies drastically, with some patients recovering

and returning to completely normal levels of ejection frac-
tion,1,2 whereas others develop severe symptoms of cardiac
decompensation that require insertion of a left ventricular
assist device (LVAD) or a heart transplant.3,4 Accurate risk
assessment and prediction of prognosis at first presentation
are crucial for appropriate allocation of therapy,4,5 monitor-
ing,3,6 and patient management.1,7 Prediction tools based on
standard criteria have had limited accuracy.8–11 In the present
study, we present a transcriptome-based biomarker (TBB),5,7

which has been derived from a single endomyocardial biopsy
sample (EMB) and which predicts the long-term clinical
outcome of patients with idiopathic dilated cardiomyopathy
(IDCM) with very high accuracy.
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Methods
Patients
EMBs were collected from patients who were referred to Johns
Hopkins Hospital between 1997 and 2006 for evaluation of cardio-
myopathy (n�350).3 A clinical database of patient outcome was
maintained concurrently for a 10-year period beginning in 1997. All
patients gave written informed consent for sample collection and
medical chart abstraction. Transvenous EMBs from the right ven-
tricular septum were obtained as described previously3 for subse-
quent microarray analysis. To avoid possible disease-specific con-
founding factors, only samples from patients with IDCM were
selected. IDCM was a diagnosis of exclusion after extensive histo-
logical workup without any detectable pathological signs.4 Within a
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repository of 180 IDCM samples, biopsy samples were selected in a
case-control fashion based on the phenotypic extremes in survival of
the cohort.12 A group with good prognosis (n�25) was defined as
having event-free survival for at least 5 years after initial presenta-
tion with heart failure symptoms; a group with poor prognosis
(n�18) experienced an event within the first 2 years. Events
included death (n�14), requirement for an LVAD (n�2), or cardiac
transplantation (n�2).

Processing of Biopsy Samples
EMBs were immediately flash-frozen in liquid nitrogen for storage
in a biorepository. All steps of RNA isolation and processing were
performed according to MIAME guidelines (Minimum Information
About a Microarray Experiment). Tissue samples (average diameter
�2 mm) were homogenized with the MM 301 Mixer Mill (Retsch,
Inc, Newtown, Pa; catalog No. 85120). Trizol reagent together with
the Micro-to-Midi Total RNA Purification System (Invitrogen,
Carlsbad, Calif; catalog No. 12183-018) was used for extraction of
total RNA (success rate 97% of samples). Concentration and
integrity of total RNA were measured with the Agilent 2100
Bioanalyzer (Agilent Technologies, Inc, Santa Clara, Calif). All
RNA samples exhibited intact 28S and 18S ribosomal RNA on
denaturing agarose gel electrophoresis, and the 260/280-nm absor-
bance readings fell within the acceptable range of 1.8 to 2.1. An
average of 568�92 ng (mean�SEM) of total RNA was isolated and
preprocessed with the Ovation Biotin RNA Amplification and
Labeling System (NuGEN Technologies, Inc, San Carlos, Calif;
catalog No. 2300-12).13

Microarray Hybridization
Samples were hybridized to the Human Genome U133 Plus 2.0
Array from Affymetrix (Santa Clara, Calif) without additional
amplification steps. We judged the microarray experiments to be
successful when RNA isolation and microarray hybridization met all
the indices of quality control as specified in the Affymetrix guide-
lines for assessing sample and array quality.7 Average background
and noise of all chips registered within acceptable ranges, and
hybridization efficiencies were similar for all samples.

Statistical Analysis
Raw intensity values from microarray hybridization were normalized
with the robust multiarray average implemented in the R package for
statistical computing (available at www.R-project.org). In the next
step, significance analysis of microarrays14 was used to identify
phenotype-specific differences in gene expression. Significance
analysis of microarrays defines significance with the q value, an
adjusted probability value for multiple comparisons. For the devel-
opment of a TBB, we used prediction analysis of microarrays15 to
create a classifier in a training set (containing two thirds of the data,
n�29), with subsequent validation in a test set (containing one third
of the data, n�14).16 Prediction analysis of microarrays is software
that enables one to find the minimum number of genes necessary to
create a phenotype-specific “nearest shrunken centroid” for classifi-
cation.15 This is done by a balanced 10-fold cross-validation in a
training set, which enables one to choose a threshold that minimizes
classification errors.15 Overall accuracy of the discovered transcrip-
tomic biomarker was assessed after 50 random partitions. To test for
balanced baseline conditions of the cohort with good versus poor
prognosis, we used Student’s t test for numerical variables and
Fisher’s exact test for categorical variables.

The authors had full access to the data and take full responsibility
for its integrity. All authors have read and agree to the manuscript as
written.

Results
We sought to test the hypothesis that the transcriptome,
derived from a single EMB, contains sufficient information to
develop a biomarker for prognosis in heart failure. Although
substantial research has demonstrated the prognostic value of

a variety of biomarkers and clinical prediction algorithms in
heart failure,17,18 the ability to distinguish individual patients
who will improve their functional status from those who will
go on to circulatory collapse and require cardiac transplanta-
tion or LVAD placement remains an important clinical
challenge.1,3

Patient Characteristics
A total of 43 EMBs were analyzed with microarray technol-
ogy to identify phenotype-specific differences in gene expres-
sion and to develop a prognostic TBB. Table 1 contains the
baseline conditions of both cohorts, patients with good
prognosis and those with poor prognosis. Importantly, there
were no significant differences in age, gender, ventricular
function, hemodynamics, or drug therapy between the 2
groups. The overall population with IDCM presented at an
average age of 46�15 years, with slight overrepresentation of
males (67%). Most patients were at an advanced New York
Heart Association classification stage (at least stage II), with
severely compromised ejection fraction of 23�13%, average
left ventricular internal diastolic dimension of 6.1�1.5 cm,
and pulmonary capillary wedge pressure of 15�9 mm Hg.

Microarray Analysis
An average of 568�92 ng (mean�SEM) of total RNA was
isolated from all EMBs and tested with the Agilent 2100
Bioanalyzer, which revealed high integrity and purity of RNA
of all samples with consistent bands of 18S and 28S RNA

Table 1. Baseline Conditions

Good Prognosis
(n�25)

Poor Prognosis
(n�18)

Age, y 46�15 48�17

Male, n (%) 17 (68) 12 (67)

NYHA, n (%)

I 1 (4) 1 (5)

II 13 (52) 6 (33)

III 10 (40) 8 (44)

IV 1 (4) 4 (22)

LVEF, % 24�13 23�13

LVIDD, cm 6.4�1 6.3�2

PAP, mm Hg

Systolic 36�13 41�13

Diastolic 16�6 20�11

Pulmonary capillary wedge
pressure, mm Hg

13�7 18�10

Medications, n (%)

�-Antagonist 17 (68) 13 (72)

ACE inhibitor 17 (68) 12 (67)

Aldosterone antagonist 4 (16) 4 (22)

Diuretic 17 (68) 15 (83)

Intravenous inotropic therapy 0 0

NYHA indicates New York Heart Association classification; LVEF, left
ventricular ejection fraction; LVIDD, left ventricular internal diastolic dimension;
PAP, pulmonary artery pressure; and ACE, angiotensin-converting enzyme
inhibitor.
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(Figure 1). There were 46 significantly overexpressed genes
in patients who recovered from heart failure (q�5%, fold
change �1.2; Table 2), as determined with significance
analysis of microarrays. Prediction analysis of microarrays
was used to evaluate the predictive value of this set of genes.
To achieve this and to test for validity, patients were allocated
into training sets that consisted of two thirds of samples
(n�29) and test sets that contained one third of samples
(n�14; Figure 2). This approach resulted in a “nearest
shrunken centroid” of 45 genes, which distinguished with
high accuracy between high-risk patients and those with an
excellent prognosis.

Validation
To evaluate the overall performance of the transcriptomic
biomarker, we performed 50 random partitions into training
and test sets. This approach revealed an overall sensitivity of
74% (95% CI 69% to 79%) and an overall specificity of 90%
(95% CI 87% to 93%). The positive predictive value was
85% (95% CI 80% to 89%), whereas the negative predictive
value was 82% (95% CI 78% to 86%). The log OR for having
an event if classified with poor prognosis was 3.3.

The molecular signature was illustrated in a heat map,
which was created by euclidean distance (Figure 3). This
independent approach of unsupervised clustering additionally
confirmed the robustness of the discovered set of genes, with
very clear distinction of samples with poor prognosis from
those with good prognosis. Pathways with major involvement
were ion transport mechanisms (13%), neuromuscular devel-
opment (10%), protein binding (15%), and transcription
(26%; www.geneontology.org; Figure 4).

Prediction of Recovery in Left
Ventricular Function
Improved clinical outcome is often associated with recovery
in left ventricular function. Accordingly, we tested the hy-
pothesis that the good prognosis signature would be associ-
ated with improved ejection fraction. Among the study
sample (n�43), we selected all subjects in whom paired
echocardiography data from baseline and follow-up were

available (n�17) and characterized them as good prognosis
or poor prognosis according to their TBB (Figure 5). Patients
classified as having good prognosis experienced a substantial
improvement in ejection fraction, from 23�3% to 42�5%
(P�0.0009), whereas patients with a poor prognosis molec-
ular signature continued to have a depressed ejection fraction,
with 20�3% and 21�3% at baseline and follow-up,
respectively.

Discussion
One of the most valuable applications of genomic informa-
tion has proven to be clinical prediction.5 Whereas the pattern
of differentially expressed genes provides insight into disease
origin,19 it has also been used for the development of
biomarkers.20 This approach has been highly successful in
neoplastic disease15,20,21 and is emerging in a variety of other
disease processes.6,16 Here, we sought to identify a TBB that
predicted the clinical outcome of patients with new-onset
heart failure. Using a repository of EMBs collected over a
10-year period,3 we have developed a highly accurate prog-
nostic biomarker that distinguishes patients with very poor
trajectory from those with excellent long-term prognosis.
Importantly, the present study used biopsy samples from
patients presenting at an early disease stage, without addi-
tional amplification of RNA.

The present findings address a major unmet need in the
management of heart failure: the ability to accurately assess
patient prognosis.1 Although there are emerging biomark-
ers17,18 and clinical prediction algorithms9,11 of prognostic
value, these markers do not dichotomize substantially be-
tween patients with highly variable outcomes.3,8–11 It has long
been known that patients with near-identical features at
presentation, receiving identical therapy, can have dramati-
cally differing prognoses.1,2,4 Although some patients un-
dergo complete recovery of their heart function within an
average of 5 years, others progress into circulatory collapse
within the first 2 years of presentation and require aggressive
therapeutic interventions, such as mechanical circulatory
assistance or cardiac transplantation.3 The ability to predict
these patients has great clinical value in an era of multiple
therapeutic options.

Previous transcriptomic studies16,22–24 investigated heart
tissue from explanted hearts or LVAD. The results of these
studies continue to be controversial and have led to the
questioning of the feasibility of TBBs in cardiovascular
disorders.23 Many previous studies evaluated gene expression
changes during left ventricular functional recovery with
mechanical circulatory assistance to discover genes associ-
ated with recovery. This approach is inherently limited,
because gene expression changes could be either causative or
due to a bystander effect of volume unloading.23,25 Although
Hall et al22 discovered a molecular signature of recovery that
was specific for patients who recovered from heart failure
during LVAD placement versus patients who continued to be
dependent on a device, Margulies et al23 concluded from a
similarly designed study that transcriptomic changes in re-
covering LVAD patients would not consistently explain their
functional improvement. These controversial findings moti-

Figure 1. Analysis of extracted total RNA with Agilent 2100 Bio-
analyzer. Every sample was tested for its integrity and purity
before microarray hybridization. The graph depicts a gel of 12
samples with consistent bands of 18S and 28S RNA. The left
lane contains the reference marker.
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Table 2. Forty-Six Significantly Overexpressed Genes in Patients With Heart Failure and Good
Prognostic Outcome (q<5%, Fold Change >1.2)

Affymetrix ID Gene Title Fold Change

232669_at Hypoxia-inducible factor 3, �-subunit 1.8

214951_at Solute carrier family 26, member 10 1.8

243482_at Epidermal growth factor receptor pathway substrate 15-like 1 1.8

226210_s_at Maternally expressed 3 1.7

232159_at Epidermal growth factor receptor pathway substrate 15-like 1 1.7

233026_s_at PDZ domain containing 2 1.6

211996_s_at KIAA0220-like protein hypothetical gene LOC 283846 1.6

243774_at Mucin 20, cell surface associated 1.6

242551_at Chromosome 18 open reading frame 1 1.6

244548_at Rho GTPase activating protein 26 1.6

244208_at Checkpoint suppressor 1 1.6

239984_at Sodium channel, voltage-gated, type VII, alpha 1.6

230683_at CDNA:FLJ20892 fis, clone ADKA03430 1.5

241869_at Apolipoprotein L, 6 1.5

241597_at Arginine-glutamic acid dipeptide (RE) repeats 1.5

235887_at Smg-6 homolog, nonsense mediated mRNA decay factor (C. elegans) 1.5

229957_at Transmembrane protein 91 1.5

223546_x_at LUC7L-like (S. cerevisiae) 1.5

239567_at Rho GTPase activating protein 10 1.5

242194_at Cullin 4A 1.5

1558525_at Hypothetical protein LOC283901 1.4

227178_at CUG triplet repeat, RNA binding protein 2 1.4

228198_s_at Mitochondrial ribosomal protein S9 1.4

202379_s_at Natural killer-tumor recognition sequence 1.4

224260_at CDNA clone 1.4

238643_at Neuroblastoma, suppression of tumorigenicity 1 1.4

232253_at RAD50 homolog (S. cerevisiae) 1.4

227968_at Parkinson disease 7 domain containing 1 1.4

233197_at Kelch-like 9 (Drosophila) 1.4

244512_at* Transcribed locus, strongly similar to XP_001081342.1 1.4

233443_at Hypothetical protein LOC389362 1.4

231275_at FLJ42875 protein 1.4

226419_s_at Hypothetical protein LOC645460 1.4

201221_s_at Small nuclear ribonucleoprotein 70-kDa polypeptide 1.4

209354_at Tumor necrosis factor receptor family member 14 1.4

226571_s_at Protein tyrosine phosphatase receptor type, S 1.4

220728_at EST 1.3

203071_at Sema domain, immunoglobulin domain (Ig), short basic domain 1.3

213946_s_at Obscurin-like 1, similar to titin isoform N2-B 1.3

201394_s_at RNA binding motif protein 5 1.3

203748_x_at RNA binding motif, single-stranded interacting protein 1 1.3

223147_s_at WD repeat domain 33 1.3

213773_x_at NOL1/NOP2/Sun domain family, member 5 1.3

1560049_at CUG triplet repeat, RNA binding protein 2 1.3

243974_at CDNA clone IMAGE:4821815 1.2

201510_at E74-like factor 3(ets domain transcription factor, epithelial specific) 1.2

*All genes listed, except 1 EST (asterisk), were used as prognostic transcriptomic biomarker for patients with HF.
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vated the present study with biopsy samples obtained at the
time of patient presentation.

Other investigators have attempted TBB studies from
explanted hearts rather than LVAD patients. Steenman et al24

investigated samples with ischemic cardiomyopathy versus
IDCM and failed to find significant differences in gene
expression. However, that study was limited by an extremely
small sample size (n�2 in each group), and data were
evaluated by pooling the RNA from these samples. This
negative finding highlights the importance of sample size in
microarray experiments. Learning-curve constructions pro-
vided evidence that 20 to 30 samples are required per training
set to achieve significance in a classification problem.26 In a
previous study that involved a larger number of samples
(n�48), we discovered a cluster of genes that accurately
distinguished idiopathic from ischemic cardiomyopathy.16

Several features of this approach may have contributed to
the present results. First, the present study used biopsy
samples obtained at the time of patient presentation, not taken

from explanted hearts, a time at which disease could be
considered end-stage. Arguably this approach reduces tran-
scriptomic changes that could be considered compensatory
and that could have been activated during disease progres-
sion.23,25 A second key issue results from our technical
approach: We used a highly efficient RNA processing tech-
nique that allowed microarray analysis without additional
amplification and thus avoided possible bias due to different
binding preferences of primers and reduction of time and
costs with regard to a later clinical application.27

The transcriptomic biomarker reported here for cardiomy-
opathy has a similar degree of accuracy as those developed
for cancer.15,20,21 Previous proof-of-concept studies suggested
the feasibility of obtaining clinically useful TBBs from
cardiac biopsy samples.16 In this regard, we previously
demonstrated in explanted heart tissue obtained at the time of
heart transplantation that a transcriptomic signature could be
developed to delineate between ischemic and nonischemic
cardiomyopathy.16 Additional support for the concept of
TBBs for heart muscle disease arises from the successful
development of expression profiles to detect cardiac
inflammation.6,28

The developed TBB, which contains a molecular signature
of 45 genes, predicted the clinical phenotype of samples with
very high specificity (90%), which suggests its utility, par-
ticularly as a rule-out test in addition to current standard risk
assessment. Furthermore, results of the TBB might be in-
cluded in the assessment of a priority score in transplant
waiting lists. In combination with clinical data and laboratory
values, the TBB has the potential to offer guidance in patient
management.6 Furthermore, the present data offer insights
into novel molecular pathways involved in the recovery of
patients with heart failure.29 Of the 46 differentially expressed
genes (Table 2), all were overexpressed in patients who
recovered from heart failure. Many overexpressed genes in
these patients have RNA or DNA binding functions, eg,
RBMS1 and WDR33, playing a crucial role in DNA replica-
tion, gene transcription, cell cycle progression, and apopto-
sis.30–32 Various genes with critical regulatory functions were
identified, ie, SNRP70; the nuclear transcription factors
ELF3, CHES1, and RERE; NSUN4, a gene with methyltrans-

Figure 3. Heat map of samples from all patients with IDCM
(n�43). Each column corresponds to a patient sample, and
each row represents a gene. Samples classified as having poor
prognosis (PP) form a distinct cluster and are highlighted in a
red square. Downregulated genes are depicted with red,
whereas upregulated genes are labeled blue. Yellow arrows
denote misclassified samples. GP indicates good prognosis.

Figure 2. Scheme of training and test sets as used for the development of a classifier with prediction analysis of microarrays. All sam-
ples obtained from patients with poor prognosis (PP, n�18) were selected from a biorepository (n�180), and those with good progno-
sis (GP, n�25) were chosen in a case-control fashion (see text for definitions of PP and GP). The classifier, a nearest shrunken cen-
troid, was developed in two thirds of the data (17 samples with GP, 12 samples with PP) with subsequent validation in the remaining
one third of data (8 samples with GP, 6 samples with PP). The overall test accuracy of the TBB was calculated from 50 random parti-
tions into training and test sets.
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ferase activity; and the transcription factor HIF3A. HIF3A
has been discussed as an inductor of glucose transporters,
vascular endothelial growth factor, and erythropoietin, simi-
lar to HIF1A and HIF2A, whereas others postulated its
counteraction with the other 2 subunits.33,34

The genes CUGBP2, LUC7-like, and SEMA3B are in-
volved in neuromuscular development, axon guidance, and
regulation of heart contractility (http://www.geneontology-
.org/). Closely related in its function is the overexpressed
obscurin-like 1 gene (OBSL1), a linker that stabilizes cell
contacts and organelles within the cytoskeleton35 and that is
located at the intercalated discs in the adult cardiomyocyte.35

OBSL1 is supposed to have similar functions to obscurin, a
multifunctional protein responsible for assembly of myofi-
brils and myocyte cellular organization.36 By its interaction
with titin and ankyrin,36 as well as by linking sarcomere and
sarcoplasmic reticulum,36 it provides the required alignments
for contraction.36

Furthermore, we discovered 2 genes previously implicated
in regenerative pathways, Rad50 and SMG6, important key
regulators in telomerase activity and DNA repair.37 Rad50 is
part of the Mre11/Rad50/Nbs1 (MRN) complex,37 a func-
tional unit that generates t loops by inserting 3� G overhangs
at human telomere ends.37 These t loops prevent chromosome

ends from being recognized as damaged DNA and provide a
template for telomerase and preservation of genome stabili-
ty.38 The increase in telomerase activity might explain a
protective effect against degenerative processes and aging in
the hearts of patients with good prognosis. It is attractive to
speculate that the reason for better recovery might be in-
creased cellular regenerative capacity,39,40 given observations
that Rad50 is essential for viability of stem cells.38 Of note, 3
genes (SNRP70, OBSL1, and RBMS1) reported here were
also reported in a study of 199 human LVAD samples that
suggested genes involved in recovery.23 There was no overlap
with results published by Lowes et al,41,42 who investigated
genes that were overexpressed during recovery from heart
failure. This may suggest that there are important differences
between gene expression changes caused by therapy and
characteristics of gene expression that may predict clinical
outcome.

Validation of microarray experiments is an issue of con-
siderable importance. In this context, it remains highly
controversial whether independent RNA quantification is
essential. Given the technical approach and motivation to
avoid RNA amplification, we lacked sufficient RNA for
independent reverse-transcription polymerase chain reaction
quantification. Recent technical advances, however, obviate

Figure 4. Pie chart illustrating involved
pathways within the prognostic biomar-
ker. Major pathways overexpressed in
patients with good prognosis included
transcription (26%), protein binding
(15%), ion transport (13%), and neuro-
muscular development (10%). Developm
indicates development.

Figure 5. Functional improvement of ejection frac-
tion (EF) from baseline to end point. Within all
enrolled cases of idiopathic cardiomyopathy
(n�43), we further analyzed those for whom echo-
cardiographic measurements at baseline and end
point were available (n�17). Samples were classi-
fied into good prognosis (right panel) or poor
prognosis (left panel) based on TBB prediction.
Patients classified as having a good prognosis
(n�11, average follow-up 49.9�21 months) experi-
enced improvement of EF (*P�0.0009), whereas
those with a poor prognosis (n�6, average follow-up
6.2�2.9 months) did not. Red line depicts 1 misclas-
sified sample. Error bars represent SEM.
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the need for polymerase chain reaction–based validation in
clinical prediction studies. Indeed, the HG-U133 Plus 2.0
Gene Chip has been shown to perform with high consistency
compared with established quantitative gene expression plat-
forms.43,44 Moreover, numerous published studies have not
used independent RNA quantification for validation. In this
regard, recent TBB studies in oncology45,46 have used split-
sample validation, which was the approach used in the
present study. Additional validation of selected transcripts by
reverse-transcription polymerase chain reaction was not con-
sidered mandatory, because the individual expression value
of a single gene has less predictive power than the averaged
overall gene expression pattern of a molecular signature.7,47

Although endomyocardial biopsy is a low-risk procedure,48

alternative methods for obtaining transcriptomic biomarkers
might be developed.5 There is evidence that affected tissue
and circulating blood cells share a high percentage of com-
mon genes.6,49 Easy accessibility of peripheral blood mono-
nuclear cells by a simple venous puncture makes those cells
very attractive for clinical application.5,6,47 Several studies
have proven a remarkably high correlation between the gene
expression profiles of peripheral blood mononuclear cells and
various tissues,6,49 and first diagnostic kits, based on blood
samples, are commercially available.6 Future studies will
show whether the biopsy-derived biomarkers are also present
in the corresponding peripheral blood mononuclear cells of
patients, whether peripheral blood mononuclear cell–derived
markers perform even better, or whether a combination of
both can potentiate the overall accuracy. Future studies will
be also necessary to compare the utility of the transcriptomic
biomarker in combination with existing biomarkers (eg, brain
natriuretic peptide,18 uric acid17) and established prediction
algorithms (artificial neural networks, the Seattle Heart Fail-
ure Model9). As a result of frequent comorbidity in patients
with cardiomyopathy, a comprehensive profile of laboratory
values and clinical data may be necessary for accurate
prediction of an individual’s prognostic outcome.

Although the present study is one of the most extensive
transcriptomic studies of heart tissue, the fact that the patient
sample size was much smaller than the measured markers
(�40 000 transcripts per sample) raises important statistical
challenges.7,26,50 Power calculations are particularly challeng-
ing in this scenario, largely because the variance of each gene
contained within the biomarker is impossible to assess, but
learning-curve modulations26 have led to a general recom-
mendation that samples of 20 to 30 in the training set are
adequate. Nevertheless, logistic regression models indicate
that under these circumstances, the probability of developing
a nonrepresentative prediction algorithm rises.7 Sophisticated
statistical modeling, however, indicates that several issues
and approaches mitigate this problem.50 First, if the number
of genes included in the predictive biomarker as predictors
can be reduced to �50 and can be chosen according to
evidence of differences in gene expression, methods of
classification may be applied successfully.50 Critical to this
approach is the practice of validating the biomarker obtained
in the training set in an independent test set. The ultimate
validation of a successful TBB requires prospective study in

an independent clinical trial, an approach highly successful in
various cancers.7,26

In addition to the sample size issue, another study limita-
tion that warrants mention is that some patients were lost to
follow-up, and prognostic information was retrieved solely
from the Social Security Death Index. Consequently, we were
not able to assess echocardiographic data in all patients.
Prospective studies are under way to address this issue.

In summary, we have developed a novel transcriptomic
biomarker for prognosis in heart failure that is obtainable
from a single EMB with potential for a direct clinical
application. This approach should improve individualization
of cardiac care and help identify patients at highest risk for
circulatory collapse within the first years of presentation with
heart failure.
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CLINICAL PERSPECTIVE
New technologies that measure expression levels of the entire complement of messenger RNAs in a cell or tissue have
become highly useful for clinical prediction of disease origin, prognosis, and therapeutic response. Because they are highly
comprehensive, they have the potential to be highly accurate. The present study shows that this approach could be very
important to fulfill an unmet need in the field of heart failure: accurate prediction of the long-term clinical course of a
patient. New-onset heart failure is very common and has a highly variable outcome; thus, the ability to accurately assess
individual patient risk is of major significance. Using endomyocardial biopsy tissue obtained at the time of clinical
presentation, we developed a molecular signature comprising 45 genes that predicted long-term clinical outcome in patients
with new-onset heart failure. This transcriptomic biomarker distinguished patients who survived at least 5 years after first
diagnosis from those who did poorly and required left ventricular mechanical assistance or cardiac transplantation or who
died. These findings may provide the physician with important prognostic information about individual patients and could
provide tools for personalized treatment or monitoring. Importantly, the biomarker can be obtained from a single
endomyocardial biopsy and therefore is clinically practical. The biomarker contained biologically relevant genes, including
those involved in regeneration and angiopoiesis, which suggests possible novel therapeutic targets.

246 Circulation July 15, 2008

 by guest on January 29, 2012http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/







	Blank Page
	Blank Page
	Blank Page



